3,843 research outputs found

    Extended x-ray absorption fine structure study of porous GaSb formed by ion implantation

    Get PDF
    Porous GaSb has been formed by Ga ion implantation into crystalline GaSb substrates at either room temperature or −180 °C. The morphology has been characterized using scanning electron microscopy and the atomic structure was determined using extended x-ray absorption fine structure spectroscopy. Room-temperature implantation at low fluences leads to the formation of ∼20-nm voids though the material remains crystalline. Higher fluences cause the microstructure to evolve into a network of amorphous GaSb rods ∼15 nm in diameter. In contrast, implantation at −180 °C generates large, elongated voids but no rods. Upon exposure to air, the surface of the porous material is readily oxidized yielding Ga₂O₃ and metallic Sb precipitates, the latter resulting from the reduction of unstable Sb₂O₃. We consider and discuss the atomic-scale mechanisms potentially operative during the concurrent crystalline-to-amorphous and continuous-to-porous transformations

    NNLO QCD corrections to event shape variables in electron positron annihilation

    Full text link
    Precision studies of QCD at electron-positron colliders are based on measurements of event shapes and jet rates. To match the high experimental accuracy, theoretical predictions to next-to-next-to-leading order (NNLO) in QCD are needed for a reliable interpretation of the data. We report the first calculation of NNLO corrections O(alpha_s^3) to three-jet production and related event shapes, and discuss their phenomenological impact.Comment: Contributed to 2007 Europhysics Conference on High Energy Physics, Manchester, England 19-25 July 200

    Generalized resummation of QCD final-state observables

    Get PDF
    The resummation of logarithmically-enhanced terms to all perturbative orders is a prerequisite for many studies of QCD final-states. Until now such resummations have always been performed by hand, for a single observable at a time. In this letter we present a general `master' resummation formula (and applicability conditions), suitable for a large class of observables. This makes it possible for next-to-leading logarithmic resummations to be carried out automatically given only a computer routine for the observable. To illustrate the method we present the first next-to-leading logarithmic resummed prediction for an event shape in hadronic dijet production.Comment: 9 pages, 1 figure; v2 includes substantial amplifications and clarification

    Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data

    Get PDF
    Event Shape Data from e+e−e^+e^- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling αS\alpha_S. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is αS(MZ)\alpha_S(M_Z)= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is αS\alpha_S= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of αS\alpha_S agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version with JADE author lis

    Co–Au core-shell nanocrystals formed by sequential ion implantation into SiO₂

    No full text
    Co–Au core-shell nanocrystals (NCs) were formed by sequential ion implantation of Au and Co into thin SiO₂. The NCs were investigated by means of transmission electron microscopy and extended x-ray absorption fine structure spectroscopy. The latter reveals a bond length expansion in the Co core compared to monatomic Co NCs. Concomitantly, a significant contraction of the bond length and a significant reduction of the effective Au–Au coordination number were observed in the Au shells. Increased Debye-Waller factors indicate significant strain in the NCs. These experimental results verify recent theoretical predictions.P.K. and M.C.R. thank the Australian Research Council for support. P.K., B.H., B.J., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program

    Measurement of the strong coupling alpha_S from the three-jet rate in e+e- - annihilation using JADE data

    Get PDF
    We present a measurement of the strong coupling alpha_S using the three-jet rate measured with the Durham algorithm in e+e- -annihilation using data of the JADE experiment at centre-of-mass energies between 14 and 44 GeV. Recent theoretical improvements provide predictions of the three-jet rate in e+e- -annihilation at next-to-next-to-leading order. In this paper a measurement of the three-jet rate is used to determine the strong coupling alpha_s from a comparison to next-to-next-to-leading order predictions matched with next-to-leading logarithmic approximations and yields a value for the strong coupling alpha_S(MZ) = 0.1199+- 0.0010 (stat.) +- 0.0021 (exp.) +- 0.0054 (had.) +- 0.0007 (theo.) consistent with the world average.Comment: 27 pages, 8 figure

    NNLO corrections to event shapes in e+e−e^+e^- annihilation

    Full text link
    We compute the next-to-next-to-leading order (NNLO) QCD corrections to the six most important event shape variables related to three-particle final states in electron-positron annihilation. The corrections are sizeable for all variables, however their magnitude is substantially different for different observables. We observe that the NNLO corrections yield a considerably better agreement between theory and experimental data both in shape and normalisation of the event shape distributions. The renormalisation scale dependence of the theoretical prediction is substantially reduced compared to the previously existing NLO results. Our results will allow a precise determination of the strong coupling constant from event shape data collected at LEP.Comment: 30 pages, LaTeX, numercial results corrected for oversubtraction of large-angle soft radiatio

    Bond length contraction in Au nanocrystals formed by ion implantation into thin SiO[sub 2]

    No full text
    Au nanocrystals (NCs) fabricated by ion implantation into thin SiOâ‚‚ and annealing were investigated by means of extended x-rayabsorption fine structure (EXAFS)spectroscopy and transmission electron microscopy. A bond length contraction was observed and can be explained by surface tension effects in a simple liquid-drop model. Such results are consistent with previous reports on nonembedded NCs implying a negligible influence of the SiOâ‚‚ matrix. Cumulant analysis of the EXAFS data suggests surface reconstruction or relaxation involving a further shortened bond length. A deviation from the octahedral closed shell structure is apparent for NCs of size 25Ã….P. K. is grateful to the Humboldt Foundation in Germany for support. P.K., B.J., A.C., C.J.G., G.d.M.A., G.J.F., and M.C.R. were supported by the Australian Synchrotron Research Program

    Swift heavy ion irradiation of GaSb: from ion tracks to nano-porous networks

    Get PDF
    Ion track formation, amorphisation, and the formation of porosity in crystalline GaSb induced by 185 MeV 197^{197}Au swift heavy ion irradiation is investigated as a function of fluence and irradiation angle relative to the surface normal. RBS/C and SAXS reveal an ion track radius between 3 nm and 5 nm. The observed pore morphology and saturation swelling of GaSb films shows a strong irradiation angle dependence. Raman spectroscopy and scanning electron microscopy show that the ion tracks act as a source of strain in the material leading to macroscopic plastic flow at high fluences and off normal irradiation. The results are consistent with the ion hammering model for glasses. Furthermore, wide angle X-ray scattering reveals the formation of nano crystallites inside otherwise amorphous GaSb after the onset of porosity
    • …
    corecore